
Server-Side Detection of Malware Infection

Markus Jakobsson
Palo Alto Research Center

Palo Alto, CA 94304
markus.jakobsson@parc.com

Ari Juels
RSA Laboratories

Cambridge, MA 02142
ajuels@rsa.com

ABSTRACT
We review the intertwined problems of malware and online
fraud, and argue that the fact that service providers often
are financially responsible for fraud causes a relative lack
of incentives for clients to manage their own security well.
This suggests the need for a server-side tool to determine
the security posture of clients before letting them transact.

We introduce an exceedingly lightweight audit mechanism
to address this need – permitting for post-mortem infection
analysis – and prove its security properties based on stan-
dard cryptographic hardness assumptions. We describe a
deployment architecture that aligns the incentives of partic-
ipants in order to facilitate quick adoption and widespread
use of the technology. Our approach is flexible enough to
protect even low-end computing devices like mobile hand-
sets, which future malware will target heavily, but whose
power and bandwidth limitations result in poor effectiveness
for traditional anti-virus solutions.

A contribution of independent potential value is the en-
abling of a centralized analysis of malware-related events,
which promises to extend the power of detection in compar-
ison to what today’s decentralized paradigm allows.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems, Security and Protec-
tion; H.1.2 [Information Systems]: Models and Princi-
ples, User/Machine Systems

General Terms
Security

Keywords
anti-virus, audit, cell phone, detection, fraud, incentive com-
patible, infection, malware, mobile, post-mortem, retroac-
tive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’09, September 8–11, 2009, Oxford, United Kingdom
Copyright 2010 ACM 978-1-60558-845-2/09/09 ...$10.00.

1. INTRODUCTION
Currently, industry sources estimate that 0.25% of in-

fected computers are directly involved in financial fraud [3].
But with malware penetrating 10-15% [15] of all computers
connected to the Internet, converting these computers into
tools for committing financial fraud (which can easily hap-
pen) would result in an instant fifty-fold increase of fraud.
To put this in perspective, most businesses would fail or fold
their Internet operations long before this happened. This
situation urgently calls for a change in malware-combatting
strategies, or the Internet will wither along with the econ-
omy that supports it.

As worrisome as this is, the problem is even more acute
in the context of mobile malware. A problem first given at-
tention in 2006 [20], it has recently been identified [35, 18]
as a likely game changer within two to three years, at which
time it is expected that there will be a comparable number of
smart phones and laptops/desktops computers in use. The
expected escalation of the problem is both due to the explo-
sive adoption rates of smartphones, and due to their inher-
ent limitations – such as power, memory, and bandwidth.
The latter makes current Anti-Virus (AV) tools unsuitable
once the rate of new or mutated malware instances reaches a
threshold beyond which it is not reasonable to push updates.
(Currently, there are close to forty thousand new instances
of Windows malware a day and updates to AV filter rules
several times an hour. This volume is not easy for a smart-
phone to manage.) Finally, phones may be more desirable
platforms to attack, given the rich data they hold, and the
fact that they inherently are payment platforms [22]. Even
with today’s relatively contained problem, consumers are
wary [17].

Looking beyond the technical parameters of the problem,
we see that this pending catastrophe owes much to poor
alignment of incentives. Financial service providers com-
monly bear the full financial responsibility for fraud1, while
most of the available malware countermeasures are designed
for client-side use. To come to terms with malware-fueled
fraud, financial service providers need access to information
allowing them to better evaluate a client’s security posture.
This type of information is sometimes available to network
nodes – ISPs and backbone nodes – whose identification

1In the U.S., for example, federal law caps consumer lia-
bility for credit-card related fraud at $50 per card. Com-
monly, financial service providers waive this liability alto-
gether, and consumers only have to invest their time to set
things straight, and bear the emotional burden of having
been victimized.

of corruption can be made using traffic analysis (observing
patterns of communication) and sometimes by analysis of
packet contents. However, network nodes are often not able
to attribute traffic to a given originating machine, given that
the network nodes cannot distinguish between different ma-
chines behind one IP address. Accurate information about
a client’s security posture is available to the client itself,
though. The dilemma is that it is not trivial to extract this
information in a reliable manner, in view of the fact that a
corrupted machine will do anything it can to cover up the
corruption.

Our contribution.
The main contribution of this paper is a new approach

to malware management. We propose a system that allows
a server to analyze the security posture of a client in order
to detect (probable) malware corruption. More precisely,
our system is a framework within which a client can com-
pile an integrity-protected log of local security events, with
no requirement for trusted hardware, and transmit this log
to a trusted server for post-mortem detection of infection.
By performing this audit in real-time, one obtains a pre-
ventive filtering functionality in addition to the retroactive
protection. Here, we note that the log is malware-resistant:
It either contains correct records up to the time of the au-
dit, or else contains corruptions detectable to the server as
signifying a malware attack.

We describe simple cryptographic tools in support of this
framework. We also offer a rough taxonomy and some exam-
ples of the types of events that a client can log to facilitate
server analysis. We do not offer detailed guidance around
the type of events that should be logged, nor do we study re-
source requirements and malware-detection efficacy for event
selection options from an empirical standpoint. Instead, we
defer most log-formulation choices for future work.

Our proposals hinge on the simple insight that in order
for a log to permit accurate post-mortem analysis, events
that impact a client’s security posture—e.g., installation of
new application software—must be logged before they take
effect. Otherwise, the event itself, if staged by a malicious
entity, can subvert the log so as to conceal infection of the
client. We note that the logs can be inspected on the cen-
tral server at any point in time after the logging of an event
is performed, or they would be of very limited value. The
logs can be erased from the client as soon as an audit has
completed and the server has obtained a copy of the logs.
In principle, these logs would then be kept indefinitely on
the server, in order to permit retroactive detection of infec-
tion. However, practically speaking, logs will have to be kept
for much shorter periods of time – days, weeks, or maybe
months.

Given the trustworthy log provided by our proposed meth-
ods, a server can take several different approaches to ana-
lyzing a client’s security posture. It can adopt a whitelist
approach to identify legitimate programs and/or a blacklist
approach that permits detection of known dangerous events
– whether characterized by code signatures, event origin, or
circumstances of executable installation or use.

Our methods apply to a wide range of infection vectors,
including drive-by malware installation, exploitation of vul-
nerabilities in legitimate software, and attacks in which a

criminal coerces a user to install a legitimate program, only
then to exploit a vulnerability in it to cause the execution of
arbitrary code. We note that our tools – while intended to
help control economically motivated crimes – can also help
curb ideologically and politically motivated online crimes
(see [11] for an overview of this problem). Our logging tech-
niques may aid in law enforcement by providing forensic
information or creating a digital chain of custody to prove
that only accredited tools ran on a given machine, and, in
general, as a way to offer assurance that a given machine is
used in a manner that complies with some set of expecta-
tions. Finally, the techniques can be used to audit electronic
voting equipment remotely, to identify attempts to commit
electoral fraud.

Our techniques are designed not just for traditional com-
putational platforms, but also work particularly well on con-
strained computing devices that cannot run AV software ef-
fectively, such as mobile handsets. Audits in our system can
be conducted periodically, e.g., when a mobile handset has
sufficient supporting bandwidth. In contrast, traditional AV
software is only effective when operating continuously, which
may pose severe limitations on resource-constrained devices.
Our techniques also support resource-adaptive approaches
to audit, e.g., breaking a log into a small, high-priority seg-
ment for rapid audit and a larger, lower-priority segment for
off-peak analysis.

It should be emphasized that our approach respects net
neutrality: It is not necessary to tie the anti-virus mecha-
nism to the infrastructure, but it is straightforward for third-
party providers to perform data collection and auditing.

Outline.
We begin by reviewing the related work (section 2), fol-

lowed by a basic review of what architectural approach is
most suitable from the point of view of good system-wide se-
curity (section 3). We then detail what problem we need to
solve to reach our goal (section 4). In section 5, we provide
a high-level description of our proposed audit mechanism.
This section also includes a review of privacy enhancements
to our basic construction and a discussion of the benefits of
collecting audit data on the network to augment the data
already collected and reported by clients. Section 5 also
describes how a central analysis of logs permits anomaly de-
tection that cannot easily be performed in the traditional
AV paradigm. Finally, in section 6, we describe our techni-
cal building blocks and provide a proof of robustness against
corruption.

2. RELATED WORK
There are four principal approaches to combating malware-

based fraud. The first, and currently most popular ap-
proach, is technical. This can be done as a server-side mea-
sure, typically as back-end anomaly detection (e.g., RSA
FraudAction, 41st parameter and Mark Monitor). It can
also be done as a client-side measure, as in the case of tra-
ditional anti-virus (AV) software. It is worth noting that
– as simple as having an up-to-date AV filter may seem –
it is believed [29] that less than 50 percent of networked
computers in the developed world do. Consumer education
(see, e.g., [25, 32]), which is a second principal approach,
can help boost those numbers and suppress the rate of user-
approved malware installations, but hardly eliminate the
problem. Policy measures offer a third approach entailing

the creation of legislative and regulatory frameworks that
favor stronger computer security. Policies may range from
regulation to encourage ISPs to block traffic from apparently
infected machines [1], to providing tax incentives for deploy-
ment of AV services, to legislation such as the CAN-SPAM
Act in the U.S. A fourth principal approach is to step up law
enforcement efforts to make online fraud less appealing to
criminals by pursuing perpetrators. This includes efforts to
infiltrate criminal networks and trace traffic to its sources.
These four main approaches are symbiotic to a large extent,
with technical measures playing a main and often enabling
role.

It is starting to become commonly recognized that the tra-
ditional AV paradigm is poorly suited for mobile platforms,
due to their resource constraints. The limitations in terms
of battery power, memory resources and bandwidth make
both signature-based technologies and behavioral technolo-
gies problematic for resource-constrained devices – at least
when the detection software is run on the client machine.
This is true even for any plausible or foreseeable advances
in battery, memory and communications technology. One
approach to address the problem could therefore be to run
detection software on the network (see, e.g., [30]), using in-
formation indicating the security posture of the client device.
If done right, this approach may mitigate the problems aris-
ing from end-device limitations. It is non-trivial to perform
remote audits, though, as infected client machines can mis-
represent their security posture, fabricating transcript evi-
dence of having no infection.

Our solution lets a server efficiently audit the security pos-
ture of a client machine. Port-scanning is a common exam-
ple of this general approach. Port-scanning can be used to
detect the use of communication protocols that are likely
to indicate vulnerability; for example, sending a DNS query
to port 53 will tell whether the probed machine has a DNS
server. Network Access Control (NAC) is a technique that
allows a network to control access by verifying that con-
necting nodes satisfy certain minimum requirements, such
as having AV software, an approved update level, and an
appropriate configuration. This type of audit allows the end-
points to quarantine a connecting node that does not meet
the requirements. Both of these techniques are commercially
useful, but offer no guarantees against infection. In fact, it
is possible for malware to communicate via commonly used
ports (or simply not communicate while being audited), and
compliance with requirements is in no way an assurance of
security. Similarly, while so-called browser-recon [23] can
be used to inspect the browser history of a target machine
for signs of corruption, it is trivial for a malware agent to
erase incriminating portions of the browser history once a
machine has been corrupted.

Stronger assurance is obtainable in principle by the use of
trusted hardware. Trusted Platform Modules (TPMs) are
widely deployed hardware devices that generate remotely
consumable attestations to the software stack executed by a
client [34]. They can support rigorous enforcement of NAC
policies requiring clients to run approved software configu-
rations. Despite hundreds of millions of shipped units, how-
ever, TPMs have seen little application [36]. Implementa-
tion complexity, key-management challenges, and concerns
about aggressive application to digital-rights management
have stymied their use, but so too have more fundamental
elements of their design. TPM attestations support only a

whitelisting approach, and do not gracefully handle the dy-
namically changing nature of software configurations result-
ing from patches, driver updates, and so forth. Additionally,
TPMs attest to the presence of an ostensibly trustworthy
software configuration, but in their standard and intended
modes of use provide no assurance against runtime attacks
on software vulnerabilities—e.g., exploits of OS bugs.

We propose a solution in which a server can audit a client
machine, avoiding the shortcomings of the approaches just
described. Our technique combines client-side logging with
server-side auditing. This general architecture was first pro-
posed by Bellare and Yee [7, 8] to record important system
events, such as crashes, resource exhaustions, and failed lo-
gin attempts. Bellare and Yee do not mention detection of
malware corruption among their motivations, though, nor is
their solution geared toward this type of attack. In its basic
instantiation, their solution is vulnerable to what we may
term a limited “roll-back” attack, in which a malware agent
erases the latest log entry (or entries) immediately upon in-
fecting a client machine. This is the entry that provides
evidence of corruption. The attack works due to the fact
that the log remains open until explicitly closed – whether
at the end of a time epoch or at the request of a server – and
the latest log entries can be manipulated during this time
period.

Independently of Bellare and Yee, Schneier and Kelsey [31]
also proposed an audit mechanism, which is similar in flavor,
but has privacy-preserving enhancements. Their solution is
similarly vulnerable to roll-back attacks due to the need for
explicit log closing, and also lacks formal security analysis.
The same shortcomings exist in the schemes proposed by
Jin, Myles, and Lotspiech [26, 27], who propose an audit
structure aimed to improve software tamper resistance.

We describe two solutions – one based on symmetric-key
cryptography alone, and one based on public-key cryptogra-
phy, both of them provably secure against roll-back attacks.
Both are exceedingly simple – the symmetric-key solution
authenticates pending events using a simple construction
based on message authentication codes, and the public-key
version – a simple but crucial modification of Bellare and
Yee’s scheme – uses a forward-secure signature scheme to
authenticate pending events.

Our approach might be viewed loosely as an enabler of
server-side execution of AV software [30]. Centralized anal-
ysis of events is not only a matter of moving the computa-
tional burden of detection from clients to servers, but also
enables new pattern-based detection approaches [21]. For
example, Bluetooth malware exhibits a strong geographic
component in terms of how it spreads, whereas installation
of a system patch is likely to instead depend on the local
time of the day, and the time the patch was released.

Our solution allows for detection of corruption of typical
user computers and mobile phones. This is in contrast to
the more specialized solution proposed by Choi, Golle and
Jakobsson [9, 10], in which deviation of the behavior of a
client machine could be detected by a third-party auditor
– but only if the audited client only performs publicly ver-
ifiable computation, such as the computation of a digital
signature or the mixing of ciphertexts.

Durfee, Smetters and Balfanz’s [13] recent work on posture-
based data protection describes a mechanism by which a
client machine can protect its contents using encryption us-
ing a key released by a third party – the trusted audit server

– after this server has verified that the client machine passes
a security audit. Their solution addresses a different prob-
lem than we do; it does not describe the audit process, but
treats that as an issue orthogonal to the question of how to
protect the data on the machine against attack.

Although it is not explicitly discussed in the context of
previous audit proposals (as listed above), it is evident that
secure audit requires timely erasure of keys. Erasure is
known to be a complicated problem – see e.g., [12, 16, 19].
However, we note that since our adversary is a software
agent, it cannot access data on the physical layer, as a hu-
man adversary might. Therefore, it suffices to simply over-
write the old contents of the cells that were used to store
the old secret key, along with intermediate values that were
generated as the new secret key was computed. Thus, while
the erasure component of the problem must be carefully at-
tended to in general audit contexts, it is straightforwardly
addressed in the context of malware detection.

3. ARCHITECTURE
We demonstrate that there exist both symmetric-key and

public-key audit mechanisms that are robust against mal-
ware infection. The existence of a public-key version im-
plies that it is possible to let any machine audit the security
posture of any other machine. However, while this may at
first seem beneficial, there are privacy reasons – and there-
fore also security reasons – not to do this. It is, for exam-
ple, clearly undesirable for an untrustworthy server to get to
learn that a given client has installed software that makes
it vulnerable. To address these privacy concerns, one can
imagine a solution in which a client records “scrubbed” data
to avoid the privacy limitations associated with reporting
detailed logs. However, this is an imperfect solution, as evi-
denced by the large gray area associated with executions and
installations of programs that are benevolent but have some
vulnerability. Furthermore, the context in which programs
are called matters to the security of the system, but it is dif-
ficult to record the right amount of detail without sacrificing
either the security or privacy of users. Worse still, it is im-
possible to perform retroactive audits relating to a program
just found to have a vulnerability if only limited contextual
data associated with this program has been recorded in the
past. We therefore conclude that a model with one or a
small number of trusted servers is better than a model in
which any machine can query any other machine, since it
limits the problem posed by rich audit data.

We assume that each end user establishes an audit rela-
tionship with an entity he or she trusts with his or her pri-
vacy, and that this entity can be queried by other machines
and requested to return information about the security pos-
ture of the client in question – possibly according to one out
of a small number of definitions of what it means to be se-
cure. It can be argued that it is in the best interest of this
entity not to abuse this trust, just as software-as-a-service
(SaaS) providers today rely for commercial success on sus-
taining an appearance of respect for the privacy of their
users. (In addition to simply relying on the trustworthiness
of the selected servers, though, there are technical construc-
tions that can limit the amount of data these servers need
to handle. We discuss some of these possible extensions to
our audit construction.)

It turns out that a centralized audit structure is also ben-
eficial as regards deployment incentives. To succeed, a secu-

rity technology has to be used. Recognizing the inadequate
penetration rates of AV software, it is crucial to avoid this
problem from reoccurring in the context of secure audit ser-
vices. The source of the problem lies simply in poor incentive
alignment: Consumers are not always convinced that they
need AV software – or aware of what protection they have or
do not have. At the same time, it is difficult for AV vendors
to make financial service providers pay for services offered to
end users (although this sometimes does happen, in the way
of partnerships that produce end-user discounts for AV soft-
ware). Further, as client-side software, AV systems must
strike a difficult balance between effectiveness and perfor-
mance. AV vendors often favor speed over thorough scans,
as consumers are intolerant of security-induced performance
degradation. To succeed, a well aligned deployment incen-
tive structure is vital. A simple approach would be to ship
all operating systems with audit software, and for financial
service providers – or any service provider, for that matter
– to carry the cost of the maintenance of the system by be-
ing required to pay to receive audit data from audit servers.
This requirement again points in the direction of a struc-
ture with a low number of trusted audit servers who have
established trust relationships with end users, and who are
supported by those who would otherwise carry the direct
cost of security failures: The financial service providers.

4. PROBLEM STATEMENT
We want to be able to remotely detect corruption of a

machine. An adversary can corrupt a victim’s machine (i.e.,
install software on it) either by coercing a user to approve
the installation or exploiting a software vulnerability. There
are actually three separate avenues of corruption: (1) the
adversary coercing a user to install malware on the target
machine; (2) the adversary exploiting a vulnerability in a
piece of benevolent software running on the target machine;
and (3) the adversary coercing a user to install benevolent
software with a vulnerability, after which he exploits this
vulnerability.

One can, in turn, classify software into three types: mal-
ware, benevolent software known to have vulnerabilities, and
benevolent software not known (by the “good guys”) to have
vulnerabilities. Here, we choose to use the term“software” in
a broad sense to include operating system code and routines,
firmware, and other fairly static code, as well as traditional
user-installed applications.

A given machine is exposed to a series of events. An event
corresponds to any invocation or installation of software, and
can be characterized by the code of the calling program, the
location from which it was obtained, and the history of user
actions leading up to the event.

Formal Statement.
We define a log Γ as a sequence of event entries and ac-

companying cryptographic data. We let Γ(j) denote event
entry j in a log with ≥ j entries. In an execution of our
protocol, we let Γi denote the log generated in response to
the ith system event. We let Ki denote key state in epoch
i. This may include both a key and supplementary data.

We specify a forward-secure malware audit system as a
function triple FSMAS = (setup, log, audit), defined as fol-
lows:

• setup(1l)→ K0: Generates a shared client / server key
with security parameter l.

• log(Γi−1,Ki−1, εi)→ (Γi,Ki): Runs on the client; ap-
pends event εi to log Γi, outputting an updated log
and key state (and deleting Ki−1); we use subscript i
to denote log epochs.

• audit(Γ,K0)→ {0, 1}: Runs on the server; verifies the
integrity of log Γ.

We define the security of FSMAS according to the follow-
ing experiment run with adversary A whose running time is
polynomially bounded in l:

Experiment ExpA,FSMAS[l, n]
K0 ← setup(l); Γ0 = φ;
for i = 1 to n;

εi ← A(Γi−1,“test”);
(Γi,Ki)← log(Γi−1,Ki−1, εi);

Γ′ ← A(“forge”,Kn);
if audit(Γ′,K0) = 1 and

∃j ∈ [1 . . . n− 1] s.t. Γ′(j) 6= Γi(j) then
output ‘1’;

else
output ‘0’;

We say that FSMAS is robust if for all A and values of
n polynomial in l, we have pr[ExpA,FSMAS[l, n] = 1] negli-
gible in l. We say that FSMAS detects event M provided
that audit(Γ,K0) = 1 iff Γ(j) = M for any j. (Of course,
this definition can be relaxed to allow false positives or false
negatives.)

In the next section, we describe a robust solution that can
detect any event that can be identified by a combination of
a whitelist, a blacklist and heuristics.

5. LOGGING AND AUDITING
This section begins with a high-level description of the

processes associated with audits. We then describe the poli-
cies used to identify what to log. (This is an area where
we believe substantial improvements are possible, especially
in terms of heuristic mechanisms to detect low-volume at-
tacks that are designed to go unnoticed.) We then discuss
user privacy, and how to trade off audit accuracy against
improved privacy. This is followed by a description of why
– and how – to collect additional audit information on the
network.

The Basic Components.
Our solution requires client-side installation of the logging

software and the selection of one (or more) audit servers.
The latter involves running (on either the client or server)
the setup routine in which a key is selected and communi-
cated between the client and server machines.

Before the client machine C allows an event to take place,
it is recorded by calling the routine log. The order here is
crucial: If the event were allowed to take place prior to being
logged – and the event involved infection – then the audit
mechanism could be subverted – see figure 1.

The audit mechanism, finally, is performed by calling the
routine audit. This may be done with a certain, fixed fre-
quency, or whenever the client device has sufficient resources,
such as bandwidth and power. It is possible to consider a
collection of logs, each one of which contains different types
of events (potentially of different urgency or associated vol-
ume), and to audit different logs under different circum-
stances.

Various implementations of these three routines are pos-
sible; we describe two sets of routines below – one based on
symmetric key cryptography, the other on public key cryp-
tography.

Evaluating the Client Security Posture.
The audit function provides a server with highly probable

indication of client-side infection in cases where it detects log
corruption. Scanning an intact log for evidence of malware
is much more challenging, as suggested in our discussion of
event selection. Broadly speaking, there are three different
approaches to server identification of client infection:

1. Whitelisting. Whitelisting can be useful in paring
down a log to enable more focused analysis of po-
tentially suspect events, and to identify the use of
benevolent programs with known vulnerabilities. In a
whitelisting approach, the server refers to a list of exe-
cutables / client behaviors believed to be secure. The
whitelist policy of course dictates what type of event
data should be logged by a client. Various programs
may require different data to be logged – especially in
light of the fact that some benevolent programs may
be known or suspected to have vulnerabilities, and it
is vital to collect information that allows the auditor
to determine whether the invocation of a piece of soft-
ware on the whitelist corresponds to an infection or
not. In a pure whitelisting approach, a server would
only classify a client posture as secure if its log contains
exclusively whitelisted events.

2. Blacklisting. In a blacklisting approach, the server
refers to a list of executables / client behaviors known
to induce (or suspected of inducing) client-side vulner-
abilities. In a pure blacklisting approach, the server
would only classify a client posture as secure if its log
contains no blacklisted events. Examples of blacklists
present on clients today include the signature file of an
AV filter and the list of offending websites present in
some browsers.

3. Heuristics. Whitelists and blacklists both have their
limitations. As the scope of logged events grows, many
events may be ambiguous or only subject to probabilis-
tic analysis, or analysis in a larger context. Heuristics
may be used to analyze events that are highly corre-
lated with malware infection, even if they cannot be
identified as installation or execution. For example, a
user that frequently visits online gambling sites may be
at higher risk for infection—a fact useful for a server
to know in its assessment of client posture. But vis-
iting a class of sites is not a clear indication that a
client actually has been infected with malware. Such
heuristic analysis is similar to the behavioral model in
a traditional AV filter.

Event
queued

Event
identified

Event
logged Event run Log

locked

Event
queued

Event
identified

Event
logged

Log
locked Event run

 Attack:
 Log
 edited

Figure 1: The top sequence corresponds to previously proposed audit mechanisms in which the log is not
locked until after the execution of the event. We note that this is not a problem outside the context of
malware related events, as the event itself would not pose a threat to the audit mechanism then. The lower
sequence shows the simple conceptual modification embodied by our proposed solution.

Useful heuristics include receipt of email from a per-
son not in the list of contacts; any connection attempt
from an external source; visits to URLs that the user
did not navigate to (e.g., iframes); browser redirection
with an invalid or missing REFERER field; any event
following the installation of software, and within the
same session2; any installation following (within the
same session) a refusal by the user to install a piece of
software; and any uncommon event3.

The most useful heuristic analysis may very well be
one that takes into consideration several concurrent
dimensions to describe an installation or execution; we
refer to [21] for a discussion of this approach.

Event Selection: What to Log.
The most critical decision in the design of our system

is what events should be placed in the client log in sup-
port of the whitelisting, blacklisting, and heuristic posture-
assessment approaches outlined above. Our goal is to record
a broad enough range of event types to ensure capture of
indicators of malware infection for a substantial fraction—
ideally, a large majority—of vectors of attack. At odds with
this goal is the desire to ensure that the logging process is
efficient, both in terms of computational overhead and the
size of the resulting log. Among those with the highest ratio
of detection efficacy to logging cost are:

• Installed executables: A common vector of malware
infection is direct installation by a deceived user–an
event subject to capture via logging of installed ex-
ecutables. The challenge with this approach is how
most effectively to fingerprint an executable.

2Here, we define session in the context of a browser, with
any process being forked from a triggering process being
considered part of the session. This case corresponds to a
sequence of events starting with the installation of benevo-
lent software with a vulnerability in.
3With “uncommon”, we mean less common on the target
machine than on an average machine, whether relating to
the type of application involved or the technical building
block used. This is a particularly useful rule, as it is local,
and therefore cannot be anticipated by an attacker wishing
to test an infection strategy beforehand.

– A file hash is effective for whitelisting approaches
to vetting executables, but is not meaningful in
the context of blacklisting, since packers will eas-
ily defy such measures.

– An approach reminiscent of the the current “sig-
nature” approach for file fingerprinting, as used in
traditional AV filtering, allows us to model black-
listing to some limited extent. However, it is un-
suitable for whitelisting, since signature collisions
are trivial to obtain.4 File fingerprinting is poten-
tially ineffective for blacklisting, given the threat
of polymorphic malware.

– More strongly invariant and effective for black-
listing approaches are the URL and IP address
of origin of the executable5. In special cases, it
may be relevant to report the entire binary to the
trusted authority, although this must be avoided
as far as possible.

• Opened attachments: Another frequent vector of
infection are executables in attachments. Here, how-
ever, blacklisting approaches based on executable-file
contents or sender names are unworkable. Attackers
can readily modify executables and sender names for
individual users. The routing history of the message
is more likely a better data source for blacklisting—
although still challenging to use effectively in the face
of botnet-based email distribution.

• Browsed URLs / IP addresses: Drive-by attacks
[14] are a growing vector for malware installation. Brows-
ing history provides potentially important coverage of
this infection vector.

• Wireless connections. Local connections, whether
WiFi or Bluetooth, pose a potential threat in terms

4It is important that executable descriptors be “collision-
free” – that it is not possible to construct a piece of malware
that has the same descriptor as a piece of software on the
whitelist.
5Given that attackers use dynamic addresses for malware
distribution, and that URLs can be subverted via attacks
such as DNS poisoning, additionally valuable may be the
referring source.

of malware infection – both as it comes to delivery
of payload and of corruption of routing information.
These connections may cause slow but insistent spread
of malware, given the difficulty in monitoring them
from the backbone. However, detailed traffic analysis
information for connections may help identify patterns
indicative of epidemics. Therefore, simply reporting
back that a connection was made, along with location
information or other identifying data, could help iden-
tify infection.

• Data for anomaly detection. As described in [21],
it may be helpful to record data that does not di-
rectly allow for identification of infection attempts –
such as approximate geographic location, and whether
an attachment was received from a contact from the
address book – in order to use anomaly detection as
an early-warning system. It is clear that some of this
data might negatively affect the privacy of the user,
and care has to be taken to strike an appropriate bal-
ance between privacy and security. This issue will be
discussed briefly next.

Privacy Enhancing Constructions.
Whether a symmetric or asymmetric building block is

used in the audit construction, it is possible to enhance
the privacy of users by limiting the expressiveness of the
data reported back during an audit. This can be done by
replacing the event to be recorded by one or more cipher-
texts describing the event in various degrees of detail, and a
more general classification of the event in plaintext format.
The server could then decrypt different collections of event
descriptors – potentially based on the current threat struc-
ture. The access to the decryption key may be controlled
using traditional threshold cryptography. Depending on the
expressiveness of the various classifications (a matter which
can be a function of the type of application, and of user
preferences), different trade-offs between privacy and secu-
rity can be made.

Another privacy enhancing approach involves a tiered au-
dit, whether hierarchical or circular. An example of a hi-
erarchic structure is a tree-based solution in which parent
nodes audit children; an example of a circular structure in-
volves two peers (such as a smartphone and the computer
it synchronizes with) to audit each other. In a tiered audit,
the auditing node would simply maintain records indicat-
ing the audit outcome, using an independent (second-level)
audit log. This is the log that then will be audited by a
third party – we refer to it as the second-order log. In fig-
ure 2, we see an example of a circular audit in which two
peer nodes audit each other, and the resulting audit logs
are then audited by a third party, the so-called audit server.
Tiered audit can be structured in a way that enhances pri-
vacy, as the second-order log could contain only a filtered
set of entries.

Augmenting the Infrastructure.
To improve resistance against malware infection and on-

line fraud still further, it is beneficial to collect and report
information on the network. Some of this information can
closely mimic the information logged on the client device; for
example, it is possible for a wireless access point to record
URLs of visited sites, and other notable information. Just as

a client computer can be audited by a trusted server, so can
an access point. This can be straightforwardly done using
the client machine as a proxy that downloads and forwards
the audit logs to the verifying server; it can even be done as
part of a regular audit of the client6.

Moreover, network nodes at a greater distance from client
machines may be used to collect and report on traffic data.
Whether this is done using a secure audit mechanism or
not, this information may be of a more aggregate form and
used to identify failed attempts to record events indicative
of infection. Namely, if network traffic indicative of a spam
bot can be traced to a small set of network endpoints, none
of which has reported an infection, then this inconsistency
is a sign of failure – and infection. Awareness of failures is
important for the maintenance of client policy information.

A Note on Machine Dependencies.
Our exposition so far has dealt mostly with how to pro-

tect a client desktop or laptop computer, and has focused on
typical user-initiated actions, such as those associated with
common web browsing activities. However, the type of poli-
cies one would use depends on the type of machine to be
protected. Let us consider a few examples to illustrate this:

1. Unlike a laptop or desktop machine, a wireless ac-
cess point (WAP) would not necessarily have access to
the packet contents (due to use of end-to-end encryp-
tion), but would have access to information regarding
the visited URLs and IP addresses, and could record
these. (There are limitations: E.g., for HTTPS traffic,
the WAP sees only the hostname.) Due to its near-
constant connectivity, it is easy to update the WAP’s
policies quickly. Some of the policies may reside on the
network instead of on the endpoint WAP node, and re-
quire interaction to evaluate. This has the benefit of
making reverse engineering and adversarial penetra-
tion testing harder.

2. As cell phones increasingly become used to perform
payments, their value will increase to attackers. At the
same time, as the number of applications – and there-
fore the number of potential vulnerabilities – increase,
the policies will become increasingly complex. This is
undesirable given the limitations on computation (due
to power conservation issues) and storage. Therefore,
and just like for the WAPs, it may become desirable
to manage some of the policies on the network, in par-
ticular those that would not require excessive amounts
of data to be communicated in order to be evaluated.

3. The infotainment system7 of a car would mostly com-
municate with an associated cell phone, and using a
very limited interface. The type of information ex-
changed – now and in the relatively near future –
may correspond to uploading of directions and coordi-
nates, synching of address books, transmission of user-
specified content markups, and use of the hands-free

6For access points serving multiple clients, the MAC ad-
dress or other identifier of the requesting machine may be
recorded to allow for the clients to be distinguished, and the
forwarding of the audit logs done by a principal client only.
7While it is unlikely that infotainment systems will allow
user-guided installations of arbitrary applications, it is clear
that any of the approved applications may be vulnerable to
attacks, just like any applications on traditional computers.

Client 1 Client 2

 Audit
 Server

Figure 2: In a circular audit, only very limited audit data is transmitted to the main audit server, resulting
in privacy benefits for the client nodes. Assuming a relative independence between the peer devices, the
attacker’s best approach is to infect one device first, and then attack the other via the audit process. Given
the relative simplicity of this process, corruption is difficult.

phone features. Due to the high losses associated with
successful corruption (largely due to the PR impact on
the brand) and the relative lack of storage limitations,
it may be desirable to record the entire transcripts in
the audit log.

Note that several types of audits are possible: To begin
with, an infrastructure node can audit the vehicular
system’s interaction with the phone, to identify infec-
tions of the infotainment system. It is also possible for
phones and infotainment systems to audit each other.

We note that it is possible to quickly roll out machine-
specific policies to protect against epidemics on the rise. It
is not only the target machines that would receive these up-
dates. For example, assume that there are signs indicating
that a given cell phone infection is becoming common. Apart
from updating the policies on vulnerable devices, one may
also update them on any machines8 that are set up to per-
form peer-audits of the vulnerable machines – whether these
are traditional computers, vehicular infotainment systems,
or infrastructure nodes such as cell phone base stations. This
way, these associated devices can assist in maintaining the
security of the target device: They would have information
about what patterns indicate corruption.

6. BUILDING BLOCKS
We present two constructions for the building block under-

lying the secure audit process. One is based on symmetric-
key cryptography, and can be proved secure based on com-
mon assumptions on the underlying hash function. The
other is based on public key cryptography, and can be proved
secure based on number-theoretic assumptions. The two
constructions share the same principal structure, as is illus-
trated schematically in figure 3.

8The main auditing server would know what types of devices
a given client machine is set up to audit, and could distribute
targeted updates of the audit policies to machines that have
been set up to audit any client type of concern.

A Symmetric Construction.
In the following, we present a construction for FSMAS.

We require a cryptographic hash function h : Z∗ → {0, 1}l
and a message authentication function MAC. (The latter
can be constructed from a hash function [5].)

Our construction is largely straightforward, but it is worth
pointing out the role of the value ci, which is a new con-
struction. Namely, ci is a key-validation value, i.e., a value
that proves that the key ki is current, but without revealing
the value. This is part of the protection against roll-back
attacks.9

• Setup. The function setup(l) → K0 computes K0 =

(c0 =⊥, k0), where k0
R← {0, 1}l. It is executed by the

server S or client C and K0 securely transmitted to the
other party. The client sets counter i← 0.

• Logging. To log event εi, the function
log(Γi−1,Ki−1, εi)→ (Γi,Ki) computes
µi = MACki(0 ‖ εi), sets Γi ← Γi−1 ‖ (εi, µi)
and Ki = (ci, ki), where ki ← h(ki−1) and ci ←
MACki(1). It then erases Ki−1 by overwriting the cor-
responding cells10. The client increments its counter
value i.

• Audit. When the server S wishes to audit C, it re-
quests (Γ, c), the current log and key-verification value
c from the client C. These must be sent over a secure
channel, namely one that ensures session freshness (to
prevent rollback attacks). The function audit(Γ,K0)→
{0, 1} extracts a counter value i from Γ by counting the
number of entries. It computes kj for all j ≤ i and ver-
ifies all corresponding MACs in Γ. It also verifies that
c = h(1, ki). If all verifications are valid, then audit
outputs ‘1’; otherwise, it outputs ‘0.’

9We note that it is possible to eliminate the use of ci by log-
ging the request to perform an audit as one particular event,
along with a nonce or a counter. This slightly reduces the
amount of computation and storage required by the client,
but at the cost of the need for keeping more state across
machines.

10It is not enough to free up the space, as that makes the old
value still accessible to a malware agent with a non-negligible
probability.

 0 1 2 3K K KK

Event 0 Event 1 Event 2

Record
0

Record
1

Record
2

Figure 3: When an event occurs, a new log record is computed from a key and the event descriptor. Then,
a new key is computed, and the old key is erased – as indicated by the dotted circles. Since events are
logged before they are allowed to take place, attackers cannot modify the logged records: The key needed to
compute this record has already been erased then.

Remarks: We note that any forward-secure PRF can al-
ternatively be used to compute keys in the above. We offer
the conceptually simplest option here. Note also that it is
possible to reduce the amount of necessary computation by
interpreting ci as the 64 first bits of ki; only these bits of
what otherwise is ki will be transmitted to the server during
an audit. The server verifies that the log has not been trun-
cated by verifying the correctness of these bits – recall that
old instances of ki, and therefore also ci, will be unavail-
able to a malware agent that infected during time interval i.
Also, note in the context of the audit operation that once an
audit on Γi has been performed, to minimize client storage
and later communication, S can retain Γi, while the client
can erase it and in later audits send only Γj − Γi for j > i.

Claim 1. The proposed system FSMAS is robust.

Proof [Sketch].
For simplicity, we make the (strong) assumption that it is

infeasible for any poly-time algorithm to distinguish between
{MACr(Mj)}nj=1 and {rj}nj=1 for any random key r and set
of random values pair {rj}nj=1, i.e., that a set of MACs with a
secret, random key on chosen messages are indistinguishable
from random. We model h as a random oracle.

We then construct a sequence of experiments FSMAS =
S1, S2, . . . Sn−1, as follows. In S1 (and all later simula-
tions in the sequence), the simulator substitutes uniformly
random values for the triple (k1, c1, µ1). In S2, it sub-
stitutes uniformly random values for the triple (k2, c2, µ2)
for µ2 and k2, etc. Now suppose that pr[ExpA,S2

[l, n] =
1] − pr[ExpA,FSMAS[l, n] = 1] is non-negligible. Then either
the adversary queries the random oracle for h on k1 with
non-negligible probability—which is not possible, given its
knowledge only of images of k1—or it can distinguish be-
tween (MACr(0 ‖ m),MACr(1)) and (r1, r2), for random
(r, r1, r2) and chosen m, violating our assumption. A similar
argument holds if pr[ExpA,Sj

[l, n] = 1]−pr[ExpA,Sj−1
[l, n] =

1] is non-negligible for any j in the sequence.
Therefore, as A cannot distinguish with non-negligible

probability between a true and random distribution on the
audit transcript for epochs through n−1 with non-negligible
probability. It is straightforward then to show that

pr[ExpA,FSMAS[l, n] = 1] is negligible in l, and hence that
FSMAS is robust.

An Asymmetric Construction.
An asymmetric construction for the building block un-

derlying our audit mechanism can be immediately obtained
from a secure forward-secure signature (FSS) scheme, such
as [6]. The setup of the building block is the same as the
setup of the FSS scheme; the logging operation corresponds
to producing a signature and evolving the secret key. The
key-validation value c can be represented as one-way func-
tion of the secret key from the previous epoch, or similar to
our stream-lined approach above, as a portion of the current
secret key11. As for the symmetric version, old instances of
c are erased along with old instances of the secret key.

The audit operation involves the verification of an unin-
terrupted series of signatures from the FSS scheme, starting
with the signature associated with the first time period of the
FSS scheme, and ending with the signature associated with
the key-validation value. The security of this construction
depends directly on that of the underlying FSS scheme, and
on the fact that a queued event is not run until it has been
logged. The proof of security at that level of abstraction
is analogous to the proof of the security of our symmetric
construction.

7. CONCLUSION
We believe that we are close to a tipping point at which

malware costs will upset the fragile balance of attack and
defense within which Internet commerce remains sustainable
today. Malware also threatens to erupt as a dominant threat
on mobile handsets as these devices grow more open and
sophisticated. We do not believe that the current anti-virus
paradigm can control this alarming situation much longer:
Mobile handsets are too limited to run AV software, and
mutating malware is blunting the power of AV even on more
powerful computing platforms.

In this paper, we have proposed a new paradigm that uses
a server- or cloud-based post-mortem detection of client in-

11We note that the value c is never revealed to an attacker,
as all audits are performed over encrypted channels.

fection. Having argued that our proposal is both sound and
practical, we hope to see other challenges to and improve-
ments of traditional malware defenses. In our view, they are
long overdue.

Acknowledgments
We wish to thank Jan Feyereisl, Sean Peisert and Sid Stamm
for helpful feedback on an earlier version of the manuscript,
and Michael Barrett, Eric Davis, Hampus Jakobsson, Karl-
Anders Johansson, Werner Johansson, Christopher Kruegel,
Allyn Romanow, and Matt Williamson for stimulating dis-
cussions and helpful suggestions. Moreover, we wish to
thank the anonymous NSPW reviewers for their bountiful
and helpful feedback. Finally, we wish to thank the partic-
ipants of the 2008 Santa Fe workshop on Malware for in-
spiring discussions leading up to the formulation of the need
for the proposed technology, and the Santa Fe Institute for
hosting the workshop.

8. REFERENCES
[1] The Australian Internet Security Initiative.

www.acma.gov.au/WEB/STANDARD/pc=PC_310317.

[2] M. Barrett and D. Levy, “A Practical Approach to
Managing Phishing,” April 2008.

[3] M. Barrett, “Cybercrime – and What We will Have
to do if We Want to Get it Under Control,” July,
2008. publius.cc/cybercrime_and_what_we_will_
have_do_if_we_want_get_it_under_control.pdf.

[4] Michael Barrett, PayPal CSO, personal
communication.

[5] M. Bellare, R. Canetti and H. Krawczyk, “Keying
Hash Functions for Message Authentication,”
Advances in Cryptology - Crypto 96 Proceedings,
1996.

[6] M. Bellare and S.K. Miner, “A Forward-Secure
Digital Signature Scheme,” Proceedings of the 19th
Annual International Cryptology Conference on
Advances in Cryptology, p.431-448, 1999.

[7] M. Bellare and B. Yee, “Forward Integrity for Secure
Audit Logs,” Technical Report, University of
California at San Diego, 23 November 1997.

[8] M. Bellare and B. Yee, “Forward-Security in
Private-Key Cryptography,” Topics in Cryptology -
CT-RSA 03, pp. 1-18, 2003.

[9] J.Y. Choi, P. Golle and M. Jakobsson. “Auditable
Privacy: On Tamper-Evident Mix Networks.”
Financial Cryptography, 2006.

[10] J.Y. Choi, P. Golle, and M. Jakobsson,
“Tamper-Evident Digital Signatures: Protecting
Certification Authorities Against Malware,” DACS,
2006.

[11] K.-K. R. Choo, “Organised crime groups in
cyberspace: a typology,” Trends in Organized Crime,
DOI 10.1007/s12117-008-9038-9, 2008.

[12] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and
M. Jakobsson, “How To Forget a Secret,” In STACS.
LNCS 1563. Springer-Verlag, pp. 500-509, 1999.

[13] G. Durfee, D.K. Smetters, and D. Balfanz,
“Posture-Based Data Protection,” PARC Technical
Report 06-11; September 2006.
www.parc.com/publication/2302/

posture-based-data-protection.html

[14] M. Egele, E. Kirda, and C. Kruegel. Mitigating
Drive-by Download Attacks: Challenges and Open
Problems. In iNetSec, 2009.

[15] Georgia Tech Information Security Center,
“Emerging Cyber Threats Report for 2009,” October,
2008. www.gtisc.gatech.edu/pdf/
CyberThreatsReport2009.pdf.

[16] A. J. Halderman, S. D. Schoen, N. Heninger, W.
Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum and E. W. Felten, “Lest we remember:
cold-boot attacks on encryption keys,” Commun.
ACM, pp. 91-98, 2009.

[17] Harris Interactive Public Relations Research, “A
Study about Mobile Device Users,” June 2009.
Abstract available at www.cloudmark.com/en/

company/mobile-survey.html, full version at
www.cloudmark.com/releases/docs/harris_poll_

stats.pdf.

[18] S. Havlin, “Phone Infections,” Science, Vol. 324. no.
5930, pp. 1023 - 1024, 22 May 2009.

[19] G. Hughes and T. Coughlin, “Tutorial on Disk Drive
Data Sanitization,” cmrr.ucsd.edu/people/Hughes/

DataSanitizationTutorial.pdf.

[20] M. Hypponen, “Malware Goes Mobile,” Scientific
American Magazine, pp. 70-77, November 2006.

[21] M. Jakobsson, “A Central Nervous System for
Automatically Detecting Malware,” blogs.parc.com/
blog/2009/09/a-central-nervous-system-for-

automatically-detecting-malware/, September 9,
2009

[22] M. Jakobsson, “Will mobile payments usher in a new
era of crime?,” blogs.parc.com/blog/2009/10/

will-mobile-payments-usher-in-a-new-era-of-

crime/, October 13, 2009

[23] M. Jakobsson, T. Jagatic, and S. Stamm, “Phishing
for Clues: Inferring Context Using Cascading Style
Sheets and Browser History,”
www.browser-recon.info.

[24] Javelin Strategy and Research, “2008 Identity Fraud
Survey Report”, February 2008.
www.javelinstrategy.com/products/F59339/97/

delivery.pdf.

[25] P. Kumaraguru, S. Sheng, A. Acquisti, L.F. Cranor,
and J.I. Hong, “PhishGuru: Lessons From a Real
World Evaluation of Anti-Phishing Training,”
e-Crime Researchers Summit, Anti-Phishing Working
Group, October 15 - 16, 2008.

[26] H. Jin, G. Myles and J. Lotspiech, “Towards better
software tamper resistance,” Information Security
Conference, Springer, 2005.

[27] H. Jin, G. Myles and J. Lotspiech, “Key
evolution-based tamper resistance: A subgroup
extension,” Association for Computing Machinery
(ACM) Symposium on Information, Computer and
Communications Security (ASIACCS), 2007.

[28] Kaspersky Lab forecasts ten-fold increase in new
malware for 2008.
www.kaspersky.com/news?id=207575629.

[29] E. Mills, “Microsoft to offer free consumer security
suite,” November, 2008.
news.cnet.com/8301-1009_3-10101582-83.html.

[30] J. Oberheide, E. Cooke and F. Jahanian, “CloudAV:
N-Version Antivirus in the Network Cloud,”
Proceedings of the 17th USENIX Security
Symposium (Security’08), 2008.

[31] B. Schneier and J. Kelsey, “Cryptographic support
for secure logs on untrusted machines,” ACM
TISSEC, 2(2):159Ñ176, 1999.

[32] S. Srikwan and M. Jakobsson, “Using Cartoons to
Teach Internet Security,” Cryptologia, vol. 32, no. 2,
2008.

[33] Symantec Report on the Underground Economy,
Published November 2008,
eval.symantec.com/mktginfo/enterprise/white_

papers/b-whitepaper_underground_economy_

report_11-2008-14525717.en-us.pdf.

[34] Trusted Computing Group. Trusted platform module
main specification. Version 1.2, Revision 103, July
2007.

[35] P. Wang, M. C. Gonzalez, C. A. Hidalgo, and A.-L.
Barabasi, “Understanding the Spreading Patterns of
Mobile Phone Viruses,” Science, 2 April 2009.

[36] J. Wiens. A Tipping Point For The Trusted Platform
Module? InformationWeek. 28 June 2008. www.
informationweek.com/news/security/encryption/

showArticle.jhtml?articleID=208800939.

